28 research outputs found

    Assessing the Quality of Actions

    Get PDF
    While recent advances in computer vision have provided reliable methods to recognize actions in both images and videos, the problem of assessing how well people perform actions has been largely unexplored in computer vision. Since methods for assessing action quality have many real-world applications in healthcare, sports, and video retrieval, we believe the computer vision community should begin to tackle this challenging problem. To spur progress, we introduce a learning-based framework that takes steps towards assessing how well people perform actions in videos. Our approach works by training a regression model from spatiotemporal pose features to scores obtained from expert judges. Moreover, our approach can provide interpretable feedback on how people can improve their action. We evaluate our method on a new Olympic sports dataset, and our experiments suggest our framework is able to rank the athletes more accurately than a non-expert human. While promising, our method is still a long way to rivaling the performance of expert judges, indicating that there is significant opportunity in computer vision research to improve on this difficult yet important task.National Science Foundation (U.S.). Graduate Research FellowshipGoogle (Firm) (Research Award)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933

    Predicting Actions from Static Scenes

    Get PDF
    International audienceHuman actions naturally co-occur with scenes. In this work we aim to discover action-scene correlation for a large number of scene categories and to use such correlation for action prediction. Towards this goal, we collect a new SUN Action dataset with manual annotations of typical human actions for 397 scenes. We next discover action-scene associations and demonstrate that scene categories can be well identified from their associated actions. Using discovered associations, we address a new task of predicting human actions for images of static scenes. We evaluate prediction of 23 and 38 action classes for images of indoor and outdoor scenes respectively and show promising results. We also propose a new application of geo-localized action prediction and demonstrate ability of our method to automatically answer queries such as "Where is a good place for a picnic?" or "Can I cycle along this path?"

    Group Action Recognition Using Space-Time Interest Points

    Full text link
    Abstract. Group action recognition is a challenging task in computer vision due to the large complexity induced by multiple motion patterns. This paper aims at analyzing group actions in video clips containing sev-eral activities. We combine the probability summation framework with the space-time (ST) interest points for this task. First, ST interest points are extracted from video clips to form the feature space. Then we use k-means for feature clustering and build a compact representation, which is then used for group action classification. The proposed approach has been applied to classification tasks including four classes: badminton, tennis, basketball, and soccer videos. The experimental results demon-strate the advantages of the proposed approach.

    Action Recognition with a Bio--Inspired Feedforward Motion Processing Model: The Richness of Center-Surround Interactions

    Get PDF
    International audienceHere we show that reproducing the functional properties of MT cells with various center--surround interactions enriches motion representation and improves the action recognition performance. To do so, we propose a simplified bio--inspired model of the motion pathway in primates: It is a feedforward model restricted to V1-MT cortical layers, cortical cells cover the visual space with a foveated structure, and more importantly, we reproduce some of the richness of center-surround interactions of MT cells. Interestingly, as observed in neurophysiology, our MT cells not only behave like simple velocity detectors, but also respond to several kinds of motion contrasts. Results show that this diversity of motion representation at the MT level is a major advantage for an action recognition task. Defining motion maps as our feature vectors, we used a standard classification method on the Weizmann database: We obtained an average recognition rate of 98.9%, which is superior to the recent results by Jhuang et al. (2007). These promising results encourage us to further develop bio--inspired models incorporating other brain mechanisms and cortical layers in order to deal with more complex videos

    Activities as Time Series of Human Postures

    No full text
    Abstract. This paper presents an exemplar-based approach to detecting and localizing human actions, such as running, cycling, and swinging, in realistic videos with dynamic backgrounds. We show that such activities can be compactly represented as time series of a few snapshots of human-body parts in their most discriminative postures, relative to other activity classes. This enables our approach to efficiently store multiple diverse exemplars per activity class, and quickly retrieve exemplars that best match the query by aligning their short time-series representations. Given a set of example videos of all activity classes, we extract multiscale regions from all their frames, and then learn a sparse dictionary of most discriminative regions. The Viterbi algorithm is then used to track detections of the learned codewords across frames of each video, resulting in their compact time-series representations. Dictionary learning is cast within the largemargin framework, wherein we study the effects of â„“1 and â„“2 regularization on the sparseness of the resulting dictionaries. Our experiments demonstrate robustness and scalability of our approach on challenging YouTube videos.

    Efficient Human Action Detection Using a Transferable Distance Function

    No full text
    Abstract. In this paper, we address the problem of efficient human action detection with only one template. We choose the standard slidingwindow approach to scan the template video against test videos, and the template video is represented by patch-based motion features. Using generic knowledge learnt from previous training sets, we weight the patches on the template video, by a transferable distance function. Based on the patch weighting, we propose a cascade structure which can efficiently scan the template video over test videos. Our method is evaluated on a human action dataset with cluttered background, and a ballet video with complex human actions. The experimental results show that our cascade structure not only achieves very reliable detection, but also can significantly improve the efficiency of patch-based human action detection, with an order of magnitude improvement in efficiency.

    Video Event Classification Using Bag of Words and String Kernels

    No full text
    The recognition of events in videos is a relevant and challenging task of automatic semantic video analysis. At present one of the most successful frameworks, used for object recognition tasks, is the bag-of-words (BoW) approach. However this approach does not model the temporal information of the video stream. In this paper we present a method to introduce temporal information within the BoW approach. Events are modeled as a sequence composed of histograms of visual features, computed from each frame using the traditional BoW model. The sequences are treated as strings where each histogram is considered as a character. Event classification of these sequences of variable size, depending on the length of the video clip, are performed using SVM classifiers with a string kernel that uses the Needlemann-Wunsch edit distance. Experimental results, performed on two datasets, soccer video and TRECVID 2005, demonstrate the validity of the proposed approach. © 2009 Springer Berlin Heidelberg
    corecore